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Abstract—A series representation for the fundamental solution of the shallow shell equations is obtained by
means of a plane-wave decomposition of the Dirac §-function. From this solution we can produce the
singular solutions which correspond to concentrated forces, couples and thermal hot spots applied to a
shallow shell with an arbitrary quadratic middle surface. The solutions converge for the entire range of the
Gaussian curvature. Numerical results are presented for the case of a concentrated normal force acting on
infinite shells having positive, zero or negative Gaussian curvature.

INTRODUCTION

The calculation of the stresses and deflections in the local environment of concentrated loads or
concentrated areas of heating on a thin shell is a problem of important concern to the shell
designer. If a concentrated force or a thermal hot spot is applizd to a thin shell on its sufficiently
smooth surface, then the disturbances of the stresses and deflections caused by the concen-
trated force or the hot spot will be restricted within a localized region around the loaded point.
Since almost any shell has a small slope within the restricted region, it is reasonable to apply
the results from the shallow shell theory to the problem of more general shells. Thus the
problem of concentrated loading or concentrated area of heating on a shallow shell with an
arbitrary quadratic middle surface is one of fundamental importance.

Since the pioneer work of Reissner{1] for a spherical cap subjected to a concentrated
normal force, many investigators have made significant contributions to the development and
identification of the singular solutions which represent concentrated loading and heating applied
to a shallow shell. Chernyshev([2] has proved that the dominant parts of the stresses and
deflections in the neighbourhood of a concentrated force or couple on a general shell are the
same as for the corresponding problem of the flat-plate. Lukasiewicz[3] has presented detailed
results for a shallow spherical cap subjected to concentrated normal and tangential forces and
concentrated couples. Fliigge and Conrad[4] have obtained the singular solutions for thermal
hot spots applied to a cylindrical shell. Sanders and Simmonds (5] have presented the solutions
for concentrated normal and tangential forces applied to a shallow cylindrical shell. Foresberg
and Fliigge (6] have investigated the solution for a normal point load applied to a shallow elliptic
paraboloid. Fliigge and Elling[7] have developed the solutions for a concentrated normal force
and thermal hot spots applied to a shallow shell with an arbitrary quadratic middle surface, and
Elling[8] has extended the solutions to present the results for concentrated tangential forces
and concentrated couples. Sanders[9] has attempted a unified treatment of the singular
solutions to the shallow shell equations by means of a Fourier transform, but the inverse
transforms are difficult to obtain explicitly except in the case of a sphere[3] and a cylinder[5].
For general shells, only approximate solutions of the inverse transforms have been developed
by Lukasiewicz[10].

The problem of concentrated loading or concentrated area of heating on a shallow shell with
an arbitrary quadratic middle surface can be reduced to the problem of finding the fundamental
solution of the shallow shell equations. In the present paper, a series representation for this
fundamental solution is obtained by means of a plane-wave decomposition of the Dirac
S-function[11, 12]. From this solution we can produce the singular solutions which represent
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concentrated forces, couples and thermal hot spots applied to the shallow shell. The identical
solutions have already been obtained by Fliigge and Elling[7] and Elling[8] by use of the
separation of variable method in polar co-ordinates. However, their solutions are not entirely
satisfactory. The solutions have certainly the correct singularities for the concentrated loading
or heating, but they include components which grow exponentially at infinity. Fliigge and Elling
have suggested to suppress such an unwanted growth by fulfilling the specified boundary
conditions at the outer edges of the finite shell, but it requires rather troublesome algebraic
manipulation. The objective herein is to seek the solution which is well-behaved at infinity, i.e.
to construct Green’s function for an infinite shell. Numerical results are presented for the case
of a concentrated normal force acting on infinite shells having positive, zero or negative
Gaussian curvature, and comparisons are made to study the infiuence of shell geometry on the
distributions of stresses and deflections.

BASIC EQUATIONS

We will restrict our investigation to a shallow shell with a quadratic middle surface
expressed by

z=5-x 437y )

where a and b correspond to the two principal radii of curvature of the shell. Figure 1 shows
the basic co-ordinate system used in this expression.

The basic partial differential equations which govern the behaviour of this shallow shell can
be reduced to a set of equations for three displacement functions &,, ®, and ®;. The equations
are[13]

X 12 _aT
L(¢1)=—T<‘—Tz(1+1’)a§
Y 12 _aT
L@)=-g - (+a s 6)
L(¢3)=%—1J;V&AT
where
2
L=AAAA+%(1—VZ)(%D,2+%D22> 3)
with
_ 9 _ 9 L
D‘_ax’ D’“ay’ A‘E?*’W 4
and
EP

K= - bending stiffness

Fig. 1. Co-ordinate system for a shallow shell.
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X, Y, Z = distributed loads applied in x, y, z directions, respectively, T = average temperature
over a section of shell, T =temperature difference between inner and outer shell surfaces,
a = coefficient of thermal expansion, v = Poisson’s ratio, ¢ = thickness of shell, E = Young’s
modulus.

Let @ be the fundamental solution of the differential operator L, i.e. the solution which

satisfies the inhomogeneous differential equation
L(®) = d(x, y) (%)

where 8(x, y) denotes the Dirac 8-function. Then the particular solutions to the set of
differential equations (2) for arbitrary loading and temperature distribution can be expressed in
the form

o=- [ [ou-6y-n{Xens Ly a LED) g¢ an

Y _aTe >
&=~ [ [ 0= y-n{ T+ 2+ e T g ay ©)

0= [ [0ty -n{EED- 12 Ls LVii m)agan

Once the set of differential equations (2) is solved, the displacements can be expressed in terms
of the displacement functions as follows:

u y by b jfdy
ve=ilp ln lnli® )
w hy I b j|Ps

where .
A+
=1 (JD1 ;Df)mn(—,pu%-»-—g)}:)1 (a Y) p;
ha= by = —«””' S DDA (1——) DD
2 (o peep?) 2(1+v)2(2_v)2
la=35 (725 Dit+ D Ja + 252D+ (S5 + Ht 15102 | ®

1 2+
ly=1ly= (‘5‘*‘ %)Dlz (‘-a_y‘ - —)DIDZ

In=lp= ( )Dz3 ( . v“‘%)DzzDz

133 = AA. .1

The stress resultants can be related to the displacements and temperature as follows:

N, = 15’ {a“+ % (; b)w (1+v)aT] M——K(Q;-ﬂz-g—fﬂ—’;—a’{y
N, = ft [av+v%~(-§-+§)w~(l+v)&f‘] My = —(1- v)K%
N“”z(xE:y)(gz"gi) Q= -K - (aw+ i aT)
M—~K(¢;—22—+v%2-f+~l-::—p¢ﬂ—') Q,=-K%(Aw+1:y&f‘) J

®

The positive directions of the stress resultants and displacements are shown in Fig. 2.
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My,

Fig. 2. Sign conventions for stress resultants and displacements.

CONCENTRATED FORCES AND THERMAL HOT SPOTS

The purpose of the present paper is to study the particular solutions to the set of differential
equations (2), when concentrated forces, couples or thermal hot spots are applied to the shallow
shell. An effective approach to this goal is to use the Dirac §-function to describe the
concentrated forces, couples, etc. and then to solve the inhomogeneous shell equations by
appealing to the theory of distributed functions. The problem is, then, reduced to finding the
fundamental solution of eqn (5).

Consider now the case in which concentrated forces, couples or hot spots are applied to the
shell at a single point. In the present case, there is no loss of generality if the origin is taken as
the loaded point. In the following lists are given for the concentrated forces, couples and hot
spots described in terms of the Dirac §-function and their corresponding solutions:

1. Tangential force in x-direction

(XY, 2= (Pow 0.0,0h (@, 0,09 ={-Z 0(x..0,0}
2. Tangential force in y-direction
{X, Y, Z} = {0, P,5(x, ), 0}, (@, ;04 = {0, -2 o(x,»,0}.

3. Normal force

(X, Y, Z}=10,0, P.5(x, )}, {®,, By, B3} = {o, 0, % o(x, y)}.
4. Tangential couple in x-direction

_ - aa(x,y)} _{ @aq:(x,y)}
{X7 Y’Z} {0,0,Mx ax [ {¢’1,®2,¢3}— 0501 K ax .

5. Tangential couple in y-direction

_ - 98(x, y)} B { _@ad)(x,y)}
{Xv sz} {0507 My 3)’ ’ {Ql’q)qu)S}— 0,0, K ay .

6. Normal couple

_[_ M, 38(x,y) M, 35(x,y) }
{X,Y,Z}{ L sotey) M 20y

_ (M, 3®(x,y) M, d9(x,y) }
{¢l’¢2’¢3} {2K ay s 2K ax ’0
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7. Plane hot spot
{T, T}={us(x, ), 0}

(@, 0,0 ={ -1+ an 228D, 214, 228, o,

8. Bending hot spot
{T, T} ={0, a8(x, y)}

+ ..
(@, 0, 0= {0,0, - =2 qzaecs ). (1)

FUNDAMENTAL SOLUTION
Plane-wave representation for ®
Equation (5) is now written out in detail in the form

. 2 242
L(®) = [AAAA+(a2—a—5+BZi-§) ]d)= 8(x, y) an
ax ay
where

2 V120~ )

2_V(12(1-v%)
th » B'= :

ta (12)

In the subsequent development of the fundamental solution of eqn (11), we follow the work

of Gel'fand and Shilov([11, pp. 122-124]. We first replace the §-function on the r.h.s. of eqn (11)
> 2r

or(437)

which is equal to the 8-function for A = —2 [11, p. 74, eqn (9)], where , is the surface area of
the unit sphere in the two-dimensional space, I' denotes the Gamma function and r=
Vv(x?+ y?). By expanding eqn (13) into plane-waves [11, p. 76, eqn (4)], we obtain the equation

(13)

L(®)= I jo1x + wyy[* dQ (14)

2 A+1)
e

where (), w,) is the co-ordinate of a point on the unit sphere and d(} is the surface element on
the unit sphere. If we now solve

1

|w,x+ oy (15)

for ¢, a function depending only on p = w;x + w,y, we can write the solution to eqn (14) in the
form

b= f d(w1x + wry) Q. (16)
I

Equation (16) is called the plane-wave representation for the fundamental solution. Now the
partial differential operators can be written as

d d d d

=g, = ery a”n

§S Vol. 14, No. 12--B
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When these are applied to eqn (15), we can obtain the ordinary differential equation of eighth
order

EE*'P ‘(‘j'“7r='——|P|A (18)

for ¢, where
pl=ad’w’+ B’ 19

The solution to eqn (11) now reduces to solving the ordinary differential equation (18). After
four times integration of eqn (18) and setting A - —2, we obtain [11, p. 55, eqn (4)]

d4
Tt 9= gh ot log ol @0)

The solution to eqn (20) that vanishes at infinity can be obtained in a standard fashion by
applying the variation of parameter method{14]. The solution is

¢ =flexp(lﬂ')+f2ekp(l—i)+f3e—-xp(l+i)+f4e—:<p(l~i) (21)
where
1 1+l * —xo(1+i h
fl=8—1;216_K;[ a*loglale ™" do
P
1V 1-i (", —xo(1-i)
f2=W'1"6—K-§ o loglale do
," L 22)
1 1+if° , ko (1+i)
f3=§z—516x R4 logfofe do
1L 1=if* 5 e (i=i)
f4=gz16—xg 4 log|ofe do )

and « = |p|/v/2. Integration of eqn (21) by parts three times and noting that [15, eqns (3.01),
(3.03) and (3.05)]

@ —ko(lxi) .
f —— do = Eilkp(1 £ )} ¥ 2 (1 - sgn p) (23a)

P

' exo(lﬂ)
do= ~E|[- xp(l+t)]+—(l+sgnp) (23b)

yields
= L 2 - T kp(1+i)
¢-Eg;;z;(z[4«ploglpl i Eilkp(1+ D} =5 (1 sgn,,)}e
+i) Eilkp(1-D]+ 5 (l—sgnp)}e""(l 4

1

1

-HE[- Kp(1+i)]-—1i(1+sgnp) e re+d
{ 7+ sn0)

e

+ I Ei[- xkp(1-1)] +1’21 (1+sgn p)} e-"""“] (24)
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where E, is the exponential integral. Using the series representations for e™*!=) and E, [15,
eqn (3.06)], and noting that

arg[kp(1xi)]=F (—745— % sgn p) (25a)
. _ {7 o
arg[~kp(1xi)]= +(Z+5sgnp> (25b)
we can obtain
1 © - 1 m—1 - 4m+2 1 m—1 m
e [...‘?:1 ((4m12)1(”‘°)4 2(log lol +loglpl+ v~ 2, ) + 7580 (p) m2=]((4”),), (pp)"* ]
(26)

where y is Euler’s constant. It should be noted that, in eqn (26), the polynomial terms in p of
degree not greater than 2 have been deleted because they represent only rigid-body displace-
ments due to application of the tangential forces.

Series representation for ®
Inserting eqn (26) into eqn (16), we can obtain the series representation for @ of the form

o= 2 (—1)" cos 2n0[ S b (éf)am+2
27rB6,,=_w ,,,=%,,2](2m+1—n)!(2m+l+n)! 2
m=1
m+1 1 2m+t+n 1 2m-2
finion+r="5 5= 8 5) ¢ & Towssia
® _1)".—1 (&,)4m 2m-3 ]
gﬂ)m RN TEDA G AR U] @
where, with = a/b
1 13 (1- 1/1-v7\
P, =ZTB—3 (%—r) W [Z+ (}+\\;:> cos 20+Z (1 +\\;:> cos 40] (28a)

o, = - %ﬂ‘ (%)4(-1—1—;)[(1 - % arctan \/Irl){Z cos 20 + ( ) cos 49}

—% sin (arctan v/|7|) cos 40] (28b)

if —1=7=<0%, and 6 = arctan (y/x), [N]= nearest integer equal to or less than N.
The coefficients I, F; and G, in eqn (27) are given respectively by

[(i=k)/2) : kl+20\/1+ i—lkl-2h 1- Jkj+2h )
M= 2, (Ik|+,2h)(| g (5 (F) izl 2%)

tIn the case that — 1= 7 <0, the integral
11 28
¢, = l(m‘”Lsgn(p )pzdﬂ

diverges. However, this divergent integral can be regularized by deleting the terms corresponding to arbitrary rigid-body
displacements. To define such a regularization uniquely, we require for — 1 < r < 0 that AA® vanishes at the origin. Physically,
this means that the normal deflection due to application of the concentrated normal force becomes zero at the loaded point.
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Hi‘lkl =0 (for i< lkl) (29b)
_ykl
Fy=log (1_+2\Lz> F=¢ 2‘2 (k> 0) (o<r=1)  (30a)
_ k-l
Fy=log (l/%) F,={ 2112 cos2k8t  (k>0) if ~1=7<0) (30b)
k-l
Go=1-21 =200 Gioket (k>0 31)
T T k
where
0 fo<r=1)
o1 —{arctan Vit G -1=7<0) (32)
and

i i! .. . i 0
= ——————— . —4 —- ' =
(') T binomial coefficients; (O) (0) 1, 0!'=1.

Detailed description of the integral calculation is presented in Ref. [16] and will not be repeated
herein.

Representations for derivatives of ®

Once the fundamental solution @ has been obtained in the form of eqn (27), it is possible to
write down the complete expressions for the stress resultants and displacements for each of the
concentrated loading and concentrated heating by use of eqns (7)~(10). In order to evaluate the
stress resultants and displacements, we must write down the expressions for the derivatives of
®. This can of course be accomplished by direct differentiation of eqn (27). An alternative and
probably more systematic method is to differentiate ¢ with respect to p and then to integrate
the results over the unit sphere. For instance

. dp+q+2’¢
DlpquA b= fn wlpw2q W dQ

The integral in this form can be evaluated systematically in a similar fashion to that used in
obtaining ®. Omitting details of the calculation, we can obtain

wimts e § e $ § ()

p=—i q=—j

y [ hd (- l)m-l <ﬂ)4m+2-2r
m=[(§r+n/zl Cm+1—t—n)!2m+1-t+n)\2
m=1

2m+1-t—n 1 2m+1—t+n 1 ) 2m-24p+q
+

r
X {HZm—Z,]n-p—q'(log% +y- z T 2

s=1 s=1 28

Mom-2pk—p-qF ln—kl}

k=—2m+2+p+q

. _1ym—t 4m—2t 2m—3+P""l
+£ Z ( 1') ' (&) Mom-s |k—p—q|GIn—kl
4 g Tl 2m—t-n)!Cm—t+n)I\2 k=—2m+3+p+q '
m=

1 lnttnp2-1] . ' |_2 -2+ 4m+2-2t o
+- i (_ 1) -1 ( n m ) (&) Hz,”—z.ln—p_ql] + D12‘D221At—|—]d>p

2 & Cm+1—t+|n)'\2
(33)
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) ) o 2t—6 LJ
Dlzllezzl‘*lAf“‘l+1(D = Z,-—)%mf:’ E (-‘ 1)" Sin 2"0
n=1

|
ol

+

k=-2m+1+p+q

m

m 2 (g_r)hn 2t
4 me=lGh T 072 Cm—t-n)!2m-t+n)'\2

+

X

k=—2m+2+p+q

1
*3

5.5crGo0)

® (_ l)m—l ﬁr 4m+2-2t
meiletom Cm+1—1—n)!2m + 1—t +n)! (_)
m=1

H2m—2,ln—p—q+1|(log % + Y —

2m-3+p+q

: 2

2m+1-t—n 1 2m+1-t+n 1)

s=1 5— s=1 E

Mom-2k—p—g+F |n—k|}

2m—4+p+q

Iom-3-p-g+1|G ki

{(a+8)12-1) 4m+2-2¢
_ 1ym+n+e-1 (n_zm_2+t)! (Br)
,,21 (=1 Cm+1—t+mt\2 Hz"'""""”“’*"]

+ D]Zi—IDZZJ-IAt—i—jH(DP

2t-7

DA DAAIP = 2—%,@—_,2( 1" cos@n~1)6 3

(_ l)m—l

o« ﬂr 4m+3-2t
X [m=[(nE+z~1)/zl 2m+2-t-n)!2m+1-t+n)! (7)
m=1

X {n2m-2.

2m-2+p+q

+

k==2m+2+p+gq

0

m

2m—3—p—

X

r
ln—p—ql(l()g %‘ t+v-

H2m—2.|k—p—q|F|n—k|}

)

q
HZm—3.Ik—p—q|G |n-k|

k==2m+3+p+q

1 {(n+t-3)/2]

+-2- m=1

man+e (M —2m —3+1)!

) om 1=t +n)!

+ D12i—lD22jAt—|‘—iq>p

prpa0 =B S crsinen-ve 3 5 ()

p=—iqg=1-

; (=™

Br dm+1-2t
+ 4 m:[(nzﬂ)/g] (2m +1-t- n)'(2m —t+ n)' (—2_)
mz2

i—aq

Br 4m+3-2t
X [m=[(r§—l)12] CQm+2—-t—n)'Cm+1—-t+n)! (_2—)
m=1

r
X {HZm—Z,tn—p—ql(IOg % +

2m—2+p+q

+

k=-2m+2+p+q

s=1

HZm—Z,lk—p—quln —kl}

2m+2—t—-n i 2m+1—-it+n 1)

25 & 2
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(34)
2( (¥ )(12’)
—-ig=~j
2m+2—l-n—1__2m+l—l+n _1—)
& 2 s=1 2s
Am+3-2
(%) HZm—z.Ik—D—qI]
(35)
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x _1ym-1 dm+1-2t

+ 7 E ( l)' ' (&)

4 ,,,=[(,,>+2,)/2] (2m+ l—t—n).(2m—t+n). 2

2m-3+p+q

X l-[2m—3.1k—p-qIGln—-k|

k=—2m+3+p+q

i [(n+1=3){2) mintt (n -2m -3+ t)' Br 4m+3-2t
3 ",2, (=N (2m+1—t+n)!<2) H”"—?v'"-"-'ﬂ]
+ DDA, (36)

We are now prepared to write down the complete expressions for the stress resultants and
displacements for each of the concentrated loading and concentrated heating, but since they are
rather cumbersome, they will be omitted herein.

NUMERICAL RESULTS AND DISCUSSION

To illustrate the use of the fundamental solution such as given by eqn (27), we have selected
the case of the concentrated normal force acting on infinite shells with variable a/b. In the
numerical evaluation of the solution, the power series for each harmonic were calculated with
the help of an electronic computer. The power series were truncated when succeeding terms
progressively decreased in magnitude and each additional term was less than 107 times the
accumulated sum. The convergence of the series is greatly influenced by the value of
dimensionless radial co-ordinate Br. For smaller values of Br, the convergence is more rapid.
For the largest value of Br considered here, the first 12 harmonics in the Fourier-series and the
first 10 terms in the power series were taken to obtain the convergent solution. The compu-
tations were executed on FACOM 230-75 at Nagoya University Computation Center.

The results for the stress resultants, stress couples and normal deflections are presented
graphically in Figs. 3-14. Figures 3-6 display the distributions of the membrane stress resultants
N, and N, along y=0 and x =0. Note that the value y =0 represents the line of maximum
curvature, while x = 0 represents the line of minimum curvature. Although N,, shown in Figs. 3
and 4, does not appear particularly sensitive to shell form, the distribution of N, is significantly
different for various ratios of a/b. As might be expected, N, for shells of negative Gaussian
curvature is tensile near the origin, while it is compressive for shells of positive or zero
Gaussian curvature.

=0

-0.4

-0.3

-0.2
2
(a]
o~
Q
N
Q
<01
k
o
0 + +
5 10
T=1.0
7=0.5
Br
0.1~ T =0

Fig. 3. Membrane stress resultant N, along y = 0 for various values of r = a/b.
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2 02
o
~N
Q
Q
~
& .o
0
T=1.0
{ r=0.5
0.1
T=-0.5
Fig. 4. Membrane stress resultant N, along x =0 for various values of 7 = afb.
-0.4
0.5 Tension positive
-0.3 ~— —— Compression positive
2"-0'2 t
0
~N
Q
N
N
k -0.1
N
0
T=-1.0
ot i

r4-0.5 Br

Fig. 5. Membrane stress resultant N, along y = 0 for various values of 7= a/b.

Figures 7-10 demonstrate the distributions of the stress couples M, and M, along y =0 and
x =0. A value of Poisson’s ratio » = 0 was used in evaluating M, and M,. We see in Figs. 9 and
10 that the pattern of the distribution of M, is quite similar for all the shells. However, the
influence of shell geometry is felt significantly in the values of M,. It should be noted that M,
for the cylinder does not decay so rapidly in the direction of the generator x =0 as in the
direction of the circular arc y =0. The distributions of the transverse shear forces Q, and Q,,
shown in Figs. 11 and 12, are also quite similar for all the ratios of a/b.

The normal deflection w, shown in Figs. 13 and 14, indicates strong depezndence upon the
shell geometry. Note that for convenience a constant has been added to the normal deflection
of the shell of zero or negative Gaussian curvature so that the displacement at infinity becomes
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-04 4 r*0
=0.5
7=1.0 Tension positive
-03 — —— Compression positive
T—
> -0.2
)
o~

Q %

L]
&
E
ﬁ -0.1 1

° -+ — N 3
5 10
Br
O.1 +
Fig. 6. Membrane stress resultant N, along x =0 for various values of 7 = a/b.
-0.3
-0.2

0.4 T

os 4

Fig. 7. Stress couple M, along y = 0 for various values of 7 = afb.

zero. (Herein, a point 8x = By = 10 is chosen for convenience as an infinite point). Although the
deflection of the shell of positive Gaussian curvature is highly localized near the origin, the
deflection of the shell of zero or negative Gaussian curvature no longer vanishes at a distance
from the load point. It should be noted that the deflection of the cylinder decays very slowly in
the direction of the generator x =0, and the influence of the finite boundaries must be
considered.

CONCLUSIONS

A series representation for the fundamental solution of the shallow shell equations has been
obtained in the present paper. From this solution we can produce the singular solutions which
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P o I IR
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.24

(2w /RIM,
@
i

©
&

0.51

0.61

074

Fig. 8. Stress couple M, along x =9 for various values of = g/b.

Q.14

0.2+

b
"
"

(2% /P, M,
o
»

[1X-2 o

0.7+

Fig. 9. Stress couple M, along y = { for various values of 7= alb.

correspond to concentrated forces, couples and thermal hot spots applied to a shallow shell
with an arbitrary quadratic middle surface. The solutions converge for the entire range of the
Gaussian curvature. The use of the fundamental solution obtained here has been illustrated for
the case of the concentrated normal force acting on infinite shells having positive, zero or
negative Gaussian curvature, and detailed graphical results have been presented for the stress
resultants and deflections. The results show that the effect of the concentrated load is felt over
a wider region in shells of zero or negative Gaussian curvature compared to shells of positive
Gaussian curvature. The fundamental solution presented here will be useful not only to
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Fig. 11. Transverse shear force Q, along y =0 for various values of r = a/b.
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Fig. 13. Normal deflection w along y =0 for various values of 7= a/b.
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Fig. 14. Normal deflection w along x = 0 for various values of r = a/b.

investigate the problem of concentrated loading or concentrated heating such as discussed in
the present paper, but also to study crack or cutout problems in the shallow shell[17].

Note added in proof—After completion of the present work, the authors have learned of two papers by Simmonds and
Tropf[18] and Simmonds and Bradley{19], in which the inverse Fourier transforms of the fundamental solutions are
presented explicitly for a shallow hyperbolic paraboloid and for a shallow shell with an arbitrary quadratic middle surface.
The fundamental solution obtained in the present paper is identical to that presented in the Simmonds and Bradley's paper.
However, the expressions for the derivatives of the fundamental solution and the subsequent computations of the stress
resultants and deflections for infinite shells subjected to a concentrated normal force are new results not contained in the
Simmonds ef al. paper.
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